
Conserving your Error 
Budget through 

Resilience Testing
~dylan



About Dylan
https://www.linkedin.com/in/dviersel 

• 52 years old
• Divide my time between The Hague, Bilthoven and 

Amsterdam
• With Viola, 2 daughters, 3 bonus children and two 

cats
• Love kitesurfing and swimming
• Worked for various large and small companies as 

Scrum Master, Product Owner, Delivery Manager, 
Agile Coach, Architect, Head of Tech, Developer

• Co-founder of Perfana since 2019

https://www.linkedin.com/in/dviersel/
https://perfana.io


SLOs & Error Budgets
A quantitative measure of the acceptable level of service unreliability or 
downtime. 

if the service operates within the error budget, it indicates a healthy 
balance between reliability and feature development, encouraging 
teams to innovate while maintaining a focus on SRE principles

SLO
SLI

Google - The Art of SLOs



Stopping the line
Error Budgets are a way to tolerate imperfection (unavailability, slow 
performance, etc.).

This can be used for useful or necessary stuff like:
⁄ releasing new features
⁄ expected system changes
⁄ inevitable failure in hardware, networks, etc.
⁄ planned downtime
⁄ risky experiments

Conversely… depleting the Error Budget means stopping the line, to get back 
on track. 
Google - The Art of SLOs



Conservation
• Budgets are usually tight. Spend them wisely. 

Unforeseen things can happen. 

• The cost of fixing defects rises exponentially 
with the time of detection. 

• Production issues/defects tend to severely 
disrupt the flow.

• Stopping the line completely blocks the 
regular SDLC flow.

• Prevention is better that curing



Shift-left AMAP
● Unit testing? Sure. 😬

● Functional testing? Maybe. 🤔

● Integration testing? Hmm.. 🤨

● Performance testing? Difficult. 😒 

● Chaos testing? Hell no! 🤯



Resilience testing
Testing focused on evaluating how well a system can recover from 
crashes, hardware failures, network issues, and high traffic loads

The goal is to identify potential weaknesses thereby enhancing 
overall reliability and user satisfaction.



“But.. but… but….”
“The test environment is not live-like”

“We need a copy of production” 

“(...) testing is too hard, we’ll test it in production”



Production setup

Leaderboard
Generation

API Server

Leaderboards

User Profiles
Load

Balancer

Game Servers

Web Server

response times error rate

SLOs: 3-5 leading indicators per user journey that tell you whether 
the user is happy.

Google - The Art of SLOs



E2E Test setup

Leaderboard
Generation

API Server

Leaderboards

User Profiles
Load

Balancer

Game Servers

Web Server

response times error rate

��

Google - The Art of SLOs



5 min - 1 hr x hrs

Regression test setup

Leaderboards

User Profiles
Web Server

Leaderboards

Data
Generation



Regression test setup

Leaderboards

User Profiles
Web Server

Leaderboards

Data
Generation

response times
error rate

response times
error rate

• Smaller scope
 → isolate the user journey

• Easy to manipulate/simulate
• Run from the pipeline
• Detect regressions early



Challenges
• Test infrastructure

• Test data

• Scope and dependencies

• Simulation and traffic shaping



Test infrastructure
● Treat your infrastructure like cattle.
● Apply the same engineering principles 

as you do for production provisioning 
incl observability. 

● Automate everything.

Disposable test environments that have 
known predictable characteristics and 
that are easy to deploy. 

Does not have to be “a copy”. We’re 
interested in the regressions. 



Test data
How to deal with:
• privacy
• relationships
• liveliness
• volume

Strategies
• Copy production - not advised
• Generate data - easy enough for simple cases
• Use proper tools that have solved the issue of 

• Generation
• Masking
• Subsetting

Examples: gretel.ai, tonic.ai and others. 

Leaderboards

Leaderboard
Generation



Scope and dependencies
• Shift left → reduce scope 
• Isolate the user journey
• Mock dependencies with a known 

and predictable reliability
• Simulate unreliability “events” such 

as slow performance or outage. Leaderboards

User Profiles
Web Server



Realistic load generation
• Use production statistics: 

• nr of concurrent users per journey
• nr and type of transactions/interactions
• nr of back end calls
• etc

• Account for seasonal/periodic influences: end of month, holidays

• Sophisticated tooling is available 
• Record and playback
• “Replay” production traffic and auto-create mocks. For example: 

https://speedscale.com 

https://speedscale.com


Beware of the pitfalls
• Production SLOs often will need to be decomposed into 

derivative SLOs to make up for the lack of similarity, complexity, 
etc.

• End-to-end: Smallest possible architectural shard to deliver the 
“user journey”; mock and model everything that has a known 
(un)reliability

• The role of the PO - should be fixed by properly implementing 
SRE, SLOs and Error Budgets 



Finally
• Testing in production can be a valid approach as long as you are 

aware of the risks and willing to spend your budget on it. 

• However.. Prevention is often better than curing. Shift-left.

• With proper design and implementation, resilience testing in pre-prod 
is not only achievable but has a number of well-known benefits

• Fast feedback, fail fast
• Can be repeated many times with marginal costs

• Apply platform engineering principles
• Automate everything, cattle not pets
• Create building blocks in shared pipelines



Perfana helps tech teams 
GO FAST WITH CONFIDENCE
through automated software 
performance validation


